
Two fundamental problems connected with AI 
 
Abstract 
 
This paper is about two fundamental problems in the field of computer science. Solving 
these two problems is important because it has to do with the creation of Artificial 
Intelligence. In fact, these two problems are not very famous because they have not many 
applications outside the field of Artificial Intelligence. 
 
In this paper we will give a solution neither of the first nor of the second problem. Our 
goal will be to formulate these two problems and to give some ideas for their solution.   
 
 

Introduction 
 
Since year 2000 we have a definition of AI [1,2,3] and since 2005 we have a program 
which satisfies this definition [4, 5]. Actually, these two facts are not very popular, first 
because the definition of AI is no accepted from almost no one except its author and 
second because the program which satisfies the definition of AI is useless from the 
practical point of view due to the combinatorial explosion. 
 
From theoretical point of view we divide the programs in two types. The first are the non-
terminating programs which will work infinitely long and the second are the terminating 
programs which will stop after a finite number of steps. On the other hand, from practical 
point of view, we divide the programs in ones that work in real time and ones which 
cannot work in real time. So, the fact that one program is a terminating one is useless for 
practical purposes if this program will work practically for infinitely long time. 
 
That is why the program which is described in [4, 5] has no use for practical purposes and 
no one recognises it as AI because it does not satisfy the major requirement which is to 
work in real time. Even the program from [4, 5] is represented only as an algorithm. It is 
not written as a program because it is useless to write a program which will terminate after 
the end of the universe. 
 
Therefore, if we want to make a program which will be recognised as AI we have to 
correct the program from [4, 5] and make it work in real time. Here we have to deal with 
the problem of the combinatorial explosion. Even in this case the term "combinatorial 
explosion" is not very proper because we use this term for the cases when a programmer 
writes a program which should work in real time but, actually, is not working. Also, we 
usually assume that when we have a combinatorial explosion a faster computer can 
eventually help us solve the problem. In this case the situation is different. We have an 
algorithm which is not designed to work in real time. There is not any attempt to make the 
algorithm faster. The main priority has been to make the description short and clear 



without taking into consideration the efficiency because it is obvious that this algorithm 
has only theoretical value and that it will never work as a real program.  
 
 

Example with the perfect compression program 
 
So, our task is to make a real program from one algorithm which is not designed to work 
in real time. Actually, the algorithm in [4, 5] describes the perfect AI but we need a 
working AI, which does not need to be perfect. 
 
We have a similar problem with the perfect compression algorithm and real compression 
programs. Let us define the perfect compression algorithm in order to see how little the 
connection between it and the real compression programs is. 
 
Here perfect compression algorithm is called the algorithm which enumerates all programs 
and returns the first one (i.e. the shortest one) which generates the string which has to be 
compressed.  
 
There are two things to note here. First, we have to mention that this algorithm is a non-
terminating one due to the undecidability of the halting problem. In order to make it a 
terminating one we have to add a requirement for efficiency of the program which we 
search for. We can say: "the first one which generates the string for no more than N steps" 
but we do not want to include an additional parameter N in the definition. That is why we 
will say: "the program which generates the string and which has the minimal sum between 
its length and the number of steps which it makes while generating the string". With such 
correction we will obtain a compression algorithm which is a terminating one from the 
theoretical point of view. (Anyway, this algorithm is non-terminating in practice and 
therefore it is useless.) 
 
On second place, this algorithm generates the perfect self-extracting compression file but 
if we assume that we have a decompression program then a shorter data file may exist, 
which will return our string if we input this data in the decompression program. This 
means that here we are talking only of self-extracting compressions. 
 
So, we have the perfect compression algorithm. We do not say the perfect compression 
program because no one wrote this algorithm as a program because this is useless work. 
The description of this algorithm can be obtained directly from the definition of 
Kolmogov's complexity [10]. This means that we can say that Kolmogov is the author of 
the first compression algorithm but maybe this is not correct because this algorithm cannot 
work in real time. Today we have many programs which make compression (including 
self-extractable compression). These programs are not perfect but they can work in real 
time. Actually, these programs are much more complicated than the perfect compression 
algorithm and you cannot construct them directly from the perfect compressor because 
they are based on totally different principles. 
 



The situation is similar with the perfect AI and the real AI. We have the perfect AI but we 
cannot extract a real AI which will be able to work in real time directly from it. This 
comes to show how difficult our task to make a real AI is. 
 
 

Dividing the problem in two parts 
 
In order to construct a real AI we will divide its work in two parts. The first part is to find 
a good model of the world and the second part is to choose the best action on the basis of 
the selected model. 
 
Actually, in the perfect AI these two parts are not separated. We will remind that the 
perfect AI from [4, 5] works by trying all possible strategies in all possible models and 
chooses the best strategy with the biggest average result (the average result is calculated 
on the basis of all possible models). So, the perfect AI solves these two tasks jointly, 
without separating them. Nevertheless, the separation of this two problems is natural and 
we will make it. 
 
If we have real time solution of both these problems then we will have a real AI. 
Unfortunately, both these problems lead us to a combinatorial explosion. These two 
problems are not very famous because they do not have many applications outside the 
field of the Artificial Intelligence. 
 
We will start with the second problem which is more famous and better studied. 
 
 

Finding of the correct action on the basis of a given model 
 
We have an algorithm for solving of this problem. The name of this algorithm is Min-Max 
and we use it with great success in Chess playing programs. Nevertheless, this algorithm is 
not proper in all cases because sometimes it gives a combinatorial explosion. Actually, it 
gives combinatorial explosion even with chess but in this game we can go around the 
combinatorial explosion by limiting the depth in which we examine the tree of the game. 
This is possible with the game of chess because we can make good evaluation of the 
position on the basis of things like the number of pieces on the board and on the 
"territory" which these pieces cover. Therefore, in some cases this problem is solvable in 
real time but not in all cases. 
 
A famous example is the problem how to make a program which can play the Go game 
well enough to beat a professional player. A price of one million dollars was offered for 
working out this problem [11]. Unfortunately, the prize was not taken because the 
problem is too complex. The Go game looks like the chess but in it you cannot apply the 
Min-Max algorithm directly because you do not have a good evaluation function for the 
positions. The problem is that we have too many possible moves and mostly because in the 



Go game after many moves nothing essential happens (nothing which can be easily 
detected by a simple evaluation function).  
 
As we said at the beginning, we will not give a solution to this problem. This is not 
because the One Million Dollar Prize has already expired but because we do not know 
how to solve this problem. Anyway, we will give some ideas. The main idea is to define 
intermediate goals and large steps. Actually, intermediate goal is used in the chess playing 
programs where this goal is to increase the value of the position. Unfortunately, this 
intermediate goal is given by the programmer but for AI this goal should be generated 
automatically because AI cannot depend on a programmer to say what is right to be done 
in each case. 
 
What is to think in large steps. This means to plan a chain of intermediate goals which 
leads to the main goal. Here we will say "goal" for events which we evaluate as good 
ones. One event can be evaluated as a good one by apriory or because it is part of a chain 
which leads to an event which has already been evaluated as a good one. So, thinking by 
large steps will be planing chains of events. For such planing we can use the Min-Max 
algorithm but here the problem is how to define events automatically and how to 
automatically find the way for transition from one event to another. For example, with the 
game of chess you have events "taking of enemy piece" and "winning the game". There is 
a connection between these two events and this connection is built in the chess playing 
programs by their creators. So, the chess playing program tries to take enemy pieces  in 
order to win the game. The problem is how to make a program which defines events 
automatically and automatically evaluates these events as good or bad. Also, AI has to be 
able to automatically find connections between these events in order to plan a chain of 
events. 
 
Actually, all these thoughts lead us to the fact that in order to solve the second problem 
we need a solution of the first one because in order to think in large steps we need an 
automatic detection of events and this is part of the problem of finding a good model of 
the world. From this point on we will talk only about the solution of the first problem. 
 
 

Formalisation of the first problem 
 
Here when we say a good model we mean an adequate one. So, this means a model which 
will give a correct predictions for the future. 
 
The first step in solving a problem is to formalise it. Let us examine the following formal 
problem. Let us have a two finite alphabets Σ and Ω. Let us have a random generator 
which generates letters from the alphabet Σ and a transducer which inputs a letter from  Σ 
and outputs a letter from Ω. The goal is to built a model of this transducer which will give 
us the possibility to guess its next output if we know the input letter and if we know the 
entire history (i.e. if we know the row a0, b0, a1, b1, ... , an-1, bn-1, an where ai are the letters 
from the random device which are inputted in the transducer and bi are the letters which 



are outputted.) So, the question is what will be the output on the step n if we know all 
data from step 0 to step n-1 and the input on the step n. In other words, what will be bn if 
we know a0, b0, a1, b1, ... , an-1, bn-1, an. 
 

 
 
What is the connection between this formalisation and the definition of AI [1,2,3]? Here 
we have a random generator and transducer, which interact. In the definition of AI the 
transducer corresponds to the concept of World. Here we try to make a model of the 
transducer but in [1,2,3] AI tries to understand the World. This means that here the 
random generator corresponds to the AI from [1,2,3]. Where is the difference? AI reads 
the output of the World (of the transducer) but the random generator does not have any 
input. AI is able to carry out some experiments in order to understand the World but the 
random generator does not make any intentional experiments. Anyway, if the observer 
waits long enough the random generator will make all experiments (accidentally). 
 
Note: In [1,2,3] the alphabets Σ and Ω are Ω and Σ and the letters a and b are d and v. 
This can cause confusion in understanding the connection between [1,2,3] and this paper. 
 
 

How to find a good model of the world (transducer) 
 
So, we have a formalisation and now our problem is formal. As we said this problem is not 
famous because it has not many applications outside the field of AI. It is even difficult to 
find an example for a practical problem which leads to this theoretic formalisation. The 
only such example which we have in mind is the following. Let us have a program 
protected against illegal use by a hardware key device. If we want to break this protection 
we have to understand how this hardware key works and try to recreate it. Really, the 
practical problem allows us to open the key and see how it is designed but here we assume 
that we have no such possibility and that we have to observe the key as a black box and to 
study only its input and output. 
 
As you see, there are not many applications of this problem. Maybe this is the reason that 
nobody offers a price for its solution but nevertheless, here we will discus this problem. 
 
So, is this problem solvable. In the general case the answer is no because if we do not 
make any suggestions about the transducer then we will not be able to say anything about 
its next output. For example, if it outputs one and the same letter one hundred times in a 
row irregardless of the input then we can predict that on the next step it will workout the 
same letter. This prediction looks natural but it lies on the conjecture that the simpler 
explanation is more probable than the complicated one. Without this conjecture we cannot 
make any prediction because it is possible that in this case we have a transducer which 



outputs one hundred times one and the same letter and on the next step it outputs another 
letter.  
 
We said that we will look for the simplest model of the transducer. Also, we have to bear 
in mind that we need a solution which works in real time.  
 
Another question is whether our transducer is deterministic device or not. It will be much 
easier if we assume that the transducer is a deterministic device but if we restrict our 
search only in the set of deterministic models then the chance to find a proper model in a 
concrete situation is very small. 
 
Next question. How many internal states our transducer has. It is reasonable to suggest 
that the number of internal states is finite (i.e. that it is finite automata). Anyway, the more 
general case is to suggest countably many internal states. It is no use suggesting an 
uncountable number for the internal states because only a countable subset of them will be 
obtainable in the deterministic case. In the non-deterministic case there is some use in 
suggesting an uncountable number of internal states but if we restrict our observation to 
the set of calculable functions then again there is no use suggesting an uncountable 
number for the internal states of the transducer. 
 
The last question. Is our transducer a calculable function or not. Definitely yes. We are 
looking for a practical solution so it has to be a calculable function and even it has to be an 
easy calculable function (i.e. calculable for small number of steps without problems like 
combinatorial explosion). Beside that, every non-calculable function can be approximated 
with a calculable one (of course, until the concrete moment n but not until the infinity). 
 
 

One theoretical solution 
 
Here we will give the next useless theoretical solution which cannot work in real time. The 
reason that we give this solution is to show that such one exists. This is important because 
we cannot give a solution which can work in real time. Instead of that at the end of this 
paper we will give some ideas about the creation of real time solution. 
 
Here is our theoretical solution. First for the deterministic case: 
 
It will enumerate all programs and will return the first one (i.e. the shortest one) which 
generates the row b0, ..., bn-1 if the input is a0, ... , an-1. Here we have a problem with 
undecidability of the halting problem again. So, we will take not the shortest one but this 
which has minimal sum between its length and the maximum number of program steps 
which it needs to generate any of the outputs (i.e. any of b0, ..., bn-1). So, this algorithm 
will give us a short and quick program which makes a very good prediction of bn. The only 
problem is that we will have to wait this algorithm to finish almost forever. 
 
For the non-deterministic case we have to complicate our algorithm a little bit. 



 
First we will complicate our programs (which we use as models) by adding one subroutine 
random() which will return zero or one with possibility 1/2. With this subroutine we 
cannot generate even the possibility 1/3 but by using subroutine random() we can 
approximate any possibility (nevertheless is it rational or irrational number).  
 
Now, when we deal with non-deterministic models we cannot say simply yes or no to the 
question does this model generate our sequence or not. Instead of that, we can calculate 
the possibility for our sequence to be generated. Of course, here we will have the problem 
with the non-terminating models again and in order to keep things calculable we will add 
one constant Max and we will calculate the possibility of the model to generate our 
sequence for no more than Max steps per output. 
 
What is the prediction of one non-deterministic model for bn. First we do not know what 
is the internal state of the model when it inputs an because there may be more than one 
possible way for this model to generate b0, ..., bn-1. Even if we know the internal state we 
cannot say which letter will be worked out as bn because our model is non-deterministic. 
Nevertheless, we can calculate for concrete model the possibility for every letter to be 
worked out. 
 
Every model will give us some prediction but we have to choose which one to trust and 
which prediction to accept as the better one. This question will not be discussed in this 
paper. 
 
 

Some ideas about the practical solution 
 
First, in order to make real time solution we will restrict the observation to the set of 
models with a finite number of states (finite automata). Of course, this restriction is 
essential because some of the worlds (transducers) cannot be described with a finite 
models. Anyway, in many cases the finite models are sufficient or at least they can give a 
good approximation of the World. (You can find in [7] the idea that we can raise the finite 
models with first order axioms in order to make models for more complex worlds.) 
 
Second, we have to mention that we will look for a set of good models instead of a single 
model. The chance to find a single model which describes the world is small. It is more 
probably to find many different simple models which describe different features of the 
world. Also, in this way our system will be more consistent because in its life (work time) 
it will change some of the selected models instead of changing the only model which can 
make its behaviour totally different. 
 
Now, let us start with the case of deterministic models. Such model looks like a 
deterministic finite automata (with finite number of states, starting state, arcs labelled with 
the letters from Σ, etc.) but here we will have only one type of states (no final states) and 
we will have a second label on every arc which will be a letter from Ω. 



 
If we have such a model with a reasonable number of states we can easily find it by a 
backtracing algorithm similar to the one from [8]. Anyway, the existence of such model is 
very suspicious because if we have deterministic model then we will be able 100% 
correctly to predict the future. This will mean that the world is very simple, which is not 
the interesting case. 
 
Let us look for a non-deterministic model of the world. Actually, as we said, we will look 
for a set of many non-deterministic models. 
 
We will divide the non-deterministic models in two groups - partially deterministic and 
totally non-deterministic. Examples of these two types of non-deterministic models are 
found in [6, 7]. 
 
Partially deterministic models will look like the deterministic models but with the 
difference that they will have a second label on the arcs, which is a set of letters from Ω 
instead of one letter. Actually, this will be a set of 2-tuples from letter and possibility 
because every letter from Ω will have its own possibility to be worked out in the case 
when the model is in the respective state and the input letter from Σ is that which is the 
first label of the arc. 
 
The good side of partially deterministic models is that their current state is determined. 
From every deterministic automata on alphabet Σ we can make partially deterministic 
model by defining the possibilities through statistics on the basis of life experience (a0, b0, 
... , an-1, bn-1). In fact, statistics will not give us the possibility but the number of times 
certain letter is worked out in certain situation. In this case (1, 1) is different from (30, 30) 
because in both cases we have 50% possibility but in the second case this is more certain. 
 
So, we have so many partially deterministic models and the question is which of them are 
better. This is a very difficult question and we will not discus it here. We will say only that 
if one model gives in some cases (i.e. arcs) prediction which is useful (for example 100% 
possibility for certain letter) and reliable (i.e. this link is used many times) then this model 
is useful. 
 
How to find a good partially deterministic model. First we need a definition which strictly 
says which model is better. The second problem is that we have to search for this model in 
huge set of possible candidates. 
 
The idea which we will give in this paper is to observe the behaviour of a single letter. We 
will call this method the "sunshine" method for finding finite automata. This idea is based 
on the fact that if we observe only the arcs which have a certain letter as a first label these 
arcs make one or more figures which we will call "Suns". The Sun is a cycle with paths 
which flow in it. This figure looks like the picture of the sun which children use to draw. 
 



 
 
The idea is that we will be able to relatively easy detect the dependency in the figure Sun 
and after constructing several suns to construct the finite automate from these suns. In 
order to catch dependencies for one letter we will need to observe long sequences of this 
letter. We may wait long until the random generator generates such sequence (especially if 
the alphabet Σ is big which is the general case). That is why we will use elimination of 
letters and construction of compound letters. Elimination of letters is when we assume that 
some letters do not change the state of the model. Compound letters are sets of letters 
which we accept as one letter. In [6, 7] we have an example of partially deterministic 
model where we use letters "left" and "right". There we assume that all other letters do not 
change the state of the model (i.e. these letters are eliminated). In the next model in [6, 7] 
we have the letter "victory or loss" which is compound. Actually, this compound letter is 
not from Σ but from Ω. Really, in the deterministic model there is no sense to include the 
output of the transducer as information our model depends on but in a non-deterministic 
case this information is essential and it is reasonable to use it in our model. 
 
 

Bibliography 
 
[1] Dobrev D. D. AI - What is this. In: PC Magazine - Bulgaria, November'2000, pp.12-13 (in Bulgarian, 

also in [9] in English). 
[2] Dobrev D. D. AI - How does it cope in an arbitrary world. In: PC Magazine - Bulgaria, February'2001, 

pp.12-13 (in Bulgarian, also in [9] in English). 
[3] Dobrev D. D. A Definition of Artificial Intelligence. In: Mathematica Balkanica, New Series, Vol. 19, 

2005, Fasc. 1-2, pp.67-74. 
[4] Dobrev D. D. Formal Definition of Artificial Intelligence. In: International Journal "Information Theories 

& Applications", vol.12, Number 3, 2005, pp.277-285. 
[5] Dobrev D. D. Formal Definition of AI and an Algorithm which Satisfies this Definition. In: Proceedings 

of XII-th International Conference KDS 2006, June, 2006 Varna, Bulgaria, pp.230-237. 
[6] Dobrev D. D. Testing AI in One Artificial World. In: Proceedings of XI-th International Conference 

KDS 2005, June, 2005 Varna, Bulgaria, pp.461-464. 
[7] Dobrev D. D. AI in Arbitrary World. In: Proceedings of 5th Panhellenic Logic Symposium, July 2005, 

University of Athens, Athens, Greece, pp. 62-67. 
[8] Dobrev D. D. First and oldest application, http://www.dobrev.com/AI/first.html 
[9] Dobrev D. D. AI Project, http://www.dobrev.com/AI/ 
[10] Kolmogorov A. N. and Uspensky V. A. Algorithms and randomness. - SIAM J. Theory of Probability 

and Its Applications, vol. 32 (1987), pp.389-412. 
[11] The Million Dollar Prize http://www.reiss.demon.co.uk/webgo/million.htm 


