
Second Attempt to Build a Model of the
Tick-Tack-Toe Game

Dimiter Dobrev

Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences,
“Acad. G. Bonchev” Str., Bl. 8,

1113 Sofia, Bulgaria,
d@dobrev.com

Abstract. We want to make a program which can play any game or
in other words we want to make AI. It is impossible to include in this
program the rules of all games and that is why our program should be
able to find these rules by itself.

We cannot solve this problem in the general case. So, our first task will
be to make a program which is able to find the rules of the Tick-Tack-
Toe game. Even this task is too complicated. So, first we will try to find
these rules manually and this will help us make a program which is able
to find these rules automatically.

Key words: Artificial Intelligence; Games; Automated reasoning.

1 Introduction

We are trying to build a formal model of one particular game. We need such
a model in order to predict the future. For example, look at the third position
shown on figure 1. At this position you see that if you play in the centre then
you will win but if you do not play in the centre then probably you will lose.
This means that you have in your head a model of the Tick-Tack-Toe game and
you can predict the future and say what will be the consequences of your next
move.

We try manually to find a model of the Tick-Tack-Toe game which will give us
the possibility to play this game successfully. If we write a simple program which
can recognise which move is wining and which one is losing then this program
will be a model of the game. Anyway, we do not like this model because it is not
easily discoverable. First reason for that is that the set of all programs is too
huge. The second reason is that the program models are not easily checkable.
This means that if you have one program which is a model of the game it is
not easy to check this fact because for this you should play some time following
the recommendations which this model gives and after that judge how good this
model is on the basis of the results achieved in the testing period.

So, we are looking for an easily discoverable model. Do not forget that we
need a model which can be found automatically.



There is one more reason why programs are not good candidates for such
models. The programs are not easily modifiable. If you make a small random
modification in one program then as a result you will receive a program which
will work in totally different way and in most cases it will not work at all. In most
optimisation tasks we try to find the best solution by making small modifications.
Let’s take for example the simplex algorithm which is for solving the linear
programming problem, or the “go up” algorithm for finding the highest place,
or the process of the evolution in nature where the child is a small modification
of its parents.

How will our easily modifiable model look like? It will be a logic theory
which consists of set of assumptions (axioms). A modification will be to add or
to remove one assumption.

2 Formalisation of the game

Before finding a formal model of the game we have to formalise it. This means to
represent the real game as a mathematical object. In this case this mathematical
object will be the set of all possible sequences of inputs and outputs. Of course,
the best representation of this set is the tree of all possible moves. Here when
we say moves we mean our moves and the moves of our opponent.

You see that for the formalisation of the game we need formalisation of our
opponent. Really, when you play a game you try to built a model both of the
game and of your opponent. So, when you play you try to understand your
opponent and to predict his behaviour.

From formal point of view, playing with different opponents is playing a
different game. This is because different opponents play different moves and
that is why the tree of all possible moves is different.

In order to formalise the game we need to fix the opponent. Let us assume
that our opponent makes line and wins if he can do this on the next move.
Otherwise he plays a random move choosing randomly from all possible correct
moves with equal possibility for each of them to be chosen.

Note. If we have a game and a fixed opponent and if we try to make a model
of both of them do we need to separate the model of the game from the model
of the opponent? For example, if our opponent never starts with a move in the
centre then should this fact be in the model of the game or should it be in the
model of the opponent. The answer is that we do not care why the opponent has
certain behaviour. Maybe this is part of the rules of the game or maybe not. In
any case, if certain behaviour is fact then we can use this fact no matter what
is the reason behind it.

There is one case when it is good to separate the model of the game from the
model of the opponent. This is the case when we try to see the world through
the eyes of our opponent. We will not try to do this because it is a difficult task.
They say that children younger than three years cannot do this, so our program
will not be able to do this either.



One more reason for this is that we will assume that each time we play the
first move. So, the world is not symmetric for us and for our opponent and this
makes it more difficult to look at the world through the eyes of our opponent.

Fig. 1: Part of a game

In order to finish the formalisation of the game we have to say what is the
information which we input and output on every move. Let us assume that on
every move we input the game status (i.e. what we have on the board) and on
every move we output the coordinates of the cell where we put a cross.

So, we want to represent the game as sequence of inputs and outputs like
this:

a0, b0, a1, b1, a2, b2 . . .

On figure 1 you can see an example of a game.

3 The first attempt

On the basis of this formalisation we made our first attempt to build a model
of the Tick-Tack-Toe game. Let’s start with the size of the input and the size
of the output according to this formalisation. The input includes the situation
on the board. These are nine cells and to describe the situation we will use 18
bits (two bits per cell). Also we need three additional bits which we will call
“victory”, “loss” and “bad move”. These three bits give us information about
the result of our activity. For example, if we win the bit “victory” will be on and
if the game is draw then both “victory” and “loss” bits will be on. The bit “bad
move” will be on when we try to do something forbidden (like putting a cross
in a cell which is not empty). These three additional bits give us the purpose
of our program. It is not sufficient to have a model of the game because if you
do not have a purpose you cannot distinguish good from bad and you cannot
choose your next move even if you know perfectly well what will happen if you
choose this move.

In the terms used in our definition of AI [1, 2, 3] the purpose of our program
is called “the meaning of life”. Here this purpose is clear. It is to achieve more
victories and less losses. In this paper it is almost useless to explain what is the
purpose of our program because it is obvious that when we play the Tick-Tack-
Toe game our purpose is to win. Anyway, these explanations are not useless



because in other games the purpose may be difficult for defining. Let’s take for
example the real life of a human being. In this case if we have a clear purpose
(or a clear meaning of life) we can look at the real life as a game.

So, our input is 21 bits (18 for the state of the board plus three additional
bits). Our output is 4 bits (two for the “x” and two for the “y” coordinate).
Now we will try to make simple implications of the type: “If you see this and do
that then on the next step you will see this.” Here is an example of such simple
implication:

p11 & ¬ outx1 & ¬ outx2 & ¬ outy1 & ¬ outy2 ⇒ bad move

The meaning of this simple implication is that if you have a cross at position
(1, 1) and if you play at this position then on the next move you will see the bit
“bad move” on.

How many are these simple implications? The maximum length of them is 46
(two times 21 plus 4). So, their number is 3 to the power of 46. Of course, we do
not need all of them but only these which are true and even only small fraction of
them which are essential. The number of these essential implications is millions
and the first program which we have made in order to decide the problem cannot
manage to proceed with so many implications. Anyway, we have made a more
sophisticated program which keeps these implications in a tree structure, which
allows it to proceed with sufficiently many implications in a reasonable time.
You can find this program in [10].

The idea of the first attempt is that in the set of the simple implications
which are true there is coded the information about the experience (about the
first moves which will be used for our education). Of course, this is not all the
information from the experience but this part of it which is essential. So, on
the basis of this set of simple implications we can say which move is bad. For
example, the implication which is described above, says us that if we have a
cross at position (1, 1) we cannot play at this position.

Unfortunately, this first attempt was a complete disaster. Really, the essential
implications were millions but this was only a technical problem, which was
solved in [10]. The real problem was the number of steps which we have to make
in order to collect enough experience. In [10] you will see that after 20,000 steps
the program almost stops to make bad moves. This means that the time (the
number of steps) for education is extremely big. Let’s take an example connected
with human beings. With people boys study slower than girls. Anyway, this is
not a problem because they study just a little bit slower. In our case we have a
serious problem because the time for education is so huge that it is practically
infinite.

Where is the problem? This model is too stupid and here you cannot apply
neither analogy nor something similar to analogy. Here the problem comes from
the formalisation of the game. On one hand, the input is too big (21 bits) and on
the other hand, we have made the wrong assumption that we see the full status
of the game. For example, in real world this assumption is not true because we
do not see the full status of the world (Actually, we cannot see behind our back.)



The assumption that we see (receive as an input) the full status of the game is
possible only with very simple games.

The conclusion is that the next attempt to build a model of the Tick-Tack-
Toe game will start with a new formalisation of the game.

4 First published attempt

The first attempt was a complete disaster and that is why it is not published.
The next attempt was much better and that is why it is published in [4, 5].

As we’ve said, this attempt starts with a new formalisation of the game. Here
we reject the assumption that we see the full status of the game. Now we will
assume that we see only one cell (the current cell). In figure 2 you will see the
eye which pinpoints the current cell. In this case the input is only one cell which
is two bits. Of course, we have also three additional bits as before. The output is
also different. Before we had nine moves (to put cross in one of the cells). Now
we have six moves and they are to move the eye in the four possible directions,
to put a cross at the current cell and to start a new game.

right

up

down

left/

Fig. 2: The new formalisation

In this new formalisation the concept of the move is changed. Before the
move was to put a cross somewhere but now it is to move through the board
or to put a cross. The main change is in the concept of what we see. Before the
assumption was that we see everything but now we see only a small part of the
game status and we have to imagine what is the status of the game. So, now
building of the model is a much more interesting task.

On the basis of this new formalisation in [4, 5] there was made an attempt to
build a model of the Tick-Tack-Toe game. This model included three main parts:
simple implications, FSMs (finite state machines) and first-order formulas. The
connection between these three parts was not clear and the attempt from [4, 5]
did not give us a working model of the game.



5 The second attempt

That is the reason why in this paper we will make a new attempt to build
a model of the Tick-Tack-Toe game. The basis of this new attempt will be
the first-order logic with types. From the theoretical point of view, there is no
difference between this logic and the common first-order logic but types give us
much bigger expressiveness.

What is the difference between the first-order logic and first-order logic with
types. In the first case the universe is one not empty set but in the second case
the universe is a union of several non-intersected sets. The second difference is
that in the first case the relation and the function symbols have only valence
but in the case with types every argument has a type.

In our first-order logic with types we will have one countable set T which
will correspond to the time and several finite sets which will correspond to the
states of some FSMs. In this paper we will mention only the sets X and Y which
have three elements each and which correspond to the coordinates of the eye.

What will be the structure of the set T or what will be the structure of the
time. We will have two function symbols “next” and “previous”. These symbols
will have one argument of type T and will return object of type T . We have
to decide whether to make T isomorphic to the natural numbers or to make it
isomorphic to the integer numbers. In other words, to introduce one constant
for the first moment or not. The better choice is to make the time isomorphic to
integers because this model is more simple. Really, we have a first moment but
we cannot use this moment in order to make conclusions. You cannot conclude
something like “When I am born they give me milk” because you have not
enough statistical information for such conclusion. Even if you have such rule
you cannot use it because you will not be born again.

Let’s see what one simple implication will look like. For example, “If you see
a cross you cannot put a cross”:

lx(T ) & put cross(T ) ⇒ bad move(next(T ))

Now, let us take Mx. This is the FSM which was described in [4].

right

left

right

left

right/left/

Fig. 3: The FSM which gives the “x” coordinate

Mx is essential part of our model because it corresponds to the “x” coordinate
of the eye. Mx can be included in our model. Here is the description of one of
its arcs:



x(T ) = x1 & right(T ) ⇒ x(next(T )) = x2

Here x is a function symbol which has one argument of type time and which
returns an object of type X. The meaning is that it returns the current “x”
coordinate of the eye or the current state of Mx. The constants x1 and x2 will
correspond to two of the states of Mx. Of course, these constants will be of the
type X.

We will notice that the simple implications and these FSMs are easily dis-
coverable. (This is important because we are looking for a model which can be
found automatically.) In [10] you can see that the simple implications can be
generated automatically and if the size of the input and output is not too big
this can be done without combinatorial explosion. In [8, 9] you can see that Mx

can be found through the method of suns. The idea of this method is that FSMs
are too many but every FSM can be decomposed in simpler objects, which we
call suns. You will receive such object if you observe only one letter in your FSM
or observe only the arcs labelled with this letter. The result is one or several
simple directed graphs with one cycle and several paths which flow in this cycle.
Such graph looks like the picture of the sun which children use to draw. For
example, if we take Mx and observe it only on the letter “right” then we will
receive one loop (which is a cycle with length one) and one path with length two
which flows in this cycle. In this way we will receive one “sun” which includes
three arcs. This sun is easily discoverable because one of its arcs gives bad move
each time and the other two give correct move each time.

As we said, for us it is important to make a model which is able to give us a
mental picture of what we cannot see. The FSMs Mx and My give us the idea
where we are at the moment (actually we cannot see directly the coordinates of
the eye). The next information which we have to include in the model is what
the situation on the board is. For this we need first-order formula like this:

p(x(T ), y(T ), T ) ⇐⇒ lx(T )

Here we did not say anything essential. In our input we have five bits and
two of them are nameless (we do not know nothing about them). It is normal to
try to say something about these two bits. One of them is lx(T ). It is normal to
assume that lx(T ) depends on something other than T or to assume that lx(T )
is a projection of some relation which has more arguments. Actually, p is this
relation and it depends on the time and on the current coordinates. Existence
of such relation would be not interesting at all if there was not the following
formula:

¬ put cross(T ) & ¬ new game(T ) ⇒ (∀X∀Y (p(X,Y, T ) ⇐⇒ p(X, Y, next(T )) ))

This formula gives us the stability of the relation p. This formula is not easily
discoverable but we are looking for stable relations and this means that we are
looking for formulas which describe stability.



At the end we will show what the formulas which describe the victory look
like.

(∃X∀Y p(X, Y, T )) ⇒ victory(T )

(∀X∀Y (d1(X,Y ) ⇒ p(X,Y, T ) )) ⇒ victory(T )

The first of these formulas says that if we made a vertical line we won.
The second formula says that if we made the first diagonal we won. The first
diagonal is a relation between X and Y but we have 512 relations between X
and Y . Is this relation an easily discoverable one? Yes, because FSMs Mx and
My are isomorphic and there are only two isomorphisms between them and these
isomorphisms are the diagonals. So, this relation is easily discoverable because
it is special.

6 Modification of the method of resolution

Even if we have a model of the game, we need a method for proving formulas
in the first-order logic in order to make a program which can play successfully
on the basis of this model. Of course, we have such a method and this is the
method of resolution.

This method has one serious disadvantage, which we have to fix in order to
make AI which is capable to work in real time. In [6, 7] you can see that if we do
not worry about the combinatorial explosion then it is easy to make AI (which
is useless because it cannot work in real time). If we want to make useful AI
then we have to worry about its efficiency.

The problem, which is to be mainly blamed for the bad efficiency, is that
the method of resolution starts every time from the beginning. In this way it is
practically impossible to prove anything complicated by this method.

We would like to make such modification that allows constructing a database
of proven disjuncts. Of course, only tautological disjuncts are true without any
propositions but these disjuncts are not interesting. That is why we would like
to build a semilattice of different logic theories which are to contain interesting
implications. For example, if we want to prove ϕ ⇒ ψ then we can find the logic
theory where ϕ is a proposition and to check if ψ is an already proven implication
in this theory.

Unfortunately, this works only for formulas which we can prove without
skolemization. The main reason that the resolution starts every time from the
beginning is that first we make the skolemization and on the next step we make
the resolution. In order to improve the efficiency of the resolution we have to
allow the skolemization and the resolution to work in parallel. This will be im-
possible if skolemization gives random names of the objects because if it gives a
name to one object twice then it will give two different names to it but we would
like the name on the second time to be the same.

So, what type of systematic names should our new skolemization use. For
us the best choice is the system proposed by David Hilbert. For every formula



ϕ(x) he defined an object τxϕ(x) which satisfies ϕ(x) if there exists an object
which satisfies ϕ(x). An important fact is that if ϕ(x) ⇐⇒ ψ(x) then τxϕ(x) =
τxψ(x). This means that for one and the same object we give one and the same
name.

For example, we want to prove ∀x(ϕ(x) ⇒ ψ(x)). If we do this in the old
way the skolemization will give a random name to the object which satisfies
ϕ(x) & ¬ ψ(x). After that, the resolution will prove that the existence of such
object leads to contradiction. It will be much faster if we have already developed
the theory of ∃x ϕ(x) and if in this theory ψ(x) where x is τxϕ(x) is already
proven and this will be sufficient. Really, we want to prove that in this theory is
true ψ(x) where x is τx(ϕ(x) & ¬ ψ(x)) but there is a connection between τxϕ(x)
and τx(ϕ(x) & ¬ ψ(x)). For the second object we know more, so everything which
we can say for the first object we can say also for the second one.

This modification of the method of resolution is only an idea and we need a
lot of work in order to make a real system which is based on this idea.

References

1. Dobrev, D. D. : AI - What is this. In: PC Magazine - Bulgaria 11, 12–13 (2000)
(in Bulgarian, also in [11] in English).

2. Dobrev, D. D. : AI - How does it cope in an arbitrary world. In: PC Magazine -
Bulgaria 2, 12–13 (2001) (in Bulgarian, also in [11] in English).

3. Dobrev, D. D. : A Definition of Artificial Intelligence. In: Mathematica Balkanica,
New Series, Vol. 19, Fasc. 1-2, 67–74 (2005)

4. Dobrev, D. D. : Testing AI in One Artificial World. In: Proceedings of XI-th In-
ternational Conference KDS 2005, June, 2005 Varna, Bulgaria, 461–464 (2005)

5. Dobrev, D. D. : AI in Arbitrary World. In: Proceedings of 5th Panhellenic Logic
Symposium, July 2005, University of Athens, Athens, Greece, 62–67 (2005)

6. Dobrev, D. D. : Formal Definition of Artificial Intelligence. In: International Journal
“Information Theories & Applications”, vol.12, Number 3, 277–285 (2005)

7. Dobrev, D. D. : Formal Definition of AI and an Algorithm which Satisfies this
Definition. In: Proceedings of XII-th International Conference KDS 2006, June,
2006 Varna, Bulgaria, 230–237 (2006)

8. Dobrev, D. D. : Two fundamental problems connected with AI, In: Proceedings of
XIII International Conference ”Knowledge-Dialogue-Solution”, June 2007, Varna,
Bulgaria, 667–673 (2007)

9. Dobrev, D. D. : The “sunshine” Method for Finding Finite Automata, In: Abstracts
of New Trends in Mathematics and Informatics, July 2007, Sofia, Bulgaria, 35–36
(2007)

10. Dobrev, D. D. : Generator of simple implications, In:
http://www.dobrev.com/AI/app4.html, (2008)

11. Dobrev, D. D. : AI Project, In: http://www.dobrev.com/AI/


