Two fundamental problems connected with Al

Abstract

This paper is about two fundamental problems infidld of computer science. Solving
these two problems is important because it hasaowith the creation of Atrtificial
Intelligence. In fact, these two problems are rery\famous because they have not many
applications outside the field of Artificial Intejence.

In this paper we will give a solution neither oetfirst nor of the second problem. Our
goal will be to formulate these two problems angjitee some ideas for their solution.

I ntroduction

Since year 2000 we have a definition of Al [1,2a81d since 2005 we have a program
which satisfies this definition [4, 5]. Actualiyhdse two facts are not very popular, first
because the definition of Al is no accepted fromast no one except its author and
second because the program which satisfies thaitaefi of Al is useless from the
practical point of view due to the combinatorigblsion.

From theoretical point of view we divide the pragsain two types. The first are the non-
terminating programs which will work infinitely Ignand the second are the terminating
programs which will stop after a finite number td®s. On the other hand, from practical
point of view, we divide the programs in ones thairk in real time and ones which
cannot work in real time. So, the fact that onegpam is a terminating one is useless for
practical purposes if this program will work praelly for infinitely long time.

That is why the program which is described in [Ah&s no use for practical purposes and
no one recognises it as Al because it does natfisalie major requirement which is to
work in real time. Even the program from [4, 5yepresented only as an algorithm. It is
not written as a program because it is uselessite wprogram which will terminate after
the end of the universe.

Therefore, if we want to make a program which Wwél recognised as Al we have to
correct the program from [4, 5] and make it workeal time. Here we have to deal with
the problem of the combinatorial explosion. Everthis case the term "combinatorial
explosion" is not very proper because we use #ni® for the cases when a programmer
writes a program which should work in real time,kadtually, is not working. Also, we
usually assume that when we have a combinatoriplosion a faster computer can
eventually help us solve the problem. In this ddwesituation is different. We have an
algorithm which is not designed to work in realdinthere is not any attempt to make the
algorithm faster. The main priority has been to endke description short and clear

without taking into consideration the efficiencychase it is obvious that this algorithm
has only theoretical value and that it will nevearivas a real program.

Example with the perfect compression program

So, our task is to make a real program from onerdéifign which is not designed to work
in real time. Actually, the algorithm in [4, 5] detes the perfect Al but we need a
working Al, which does not need to be perfect.

We have a similar problem with the perfect compogsalgorithm and real compression
programs. Let us define the perfect compressioaritign in order to see how little the
connection between it and the real compressionrpnogis.

Here perfect compression algorithm is called tigethm which enumerates all programs
and returns the first one (i.e. the shortest ort@ghwgenerates the string which has to be
compressed.

There are two things to note here. First, we haveéntion that this algorithm is a non-
terminating one due to the undecidability of thétitg problem. In order to make it a
terminating one we have to add a requirement fociexicy of the program which we
search for. We can say: "the first one which gemesrthe string for no more thahsteps”
but we do not want to include an additional parami§tin the definition. That is why we
will say: "the program which generates the strind hich has the minimal sum between
its length and the number of steps which it makb#evgenerating the string". With such
correction we will obtain a compression algorithrhick is a terminating one from the
theoretical point of view. (Anyway, this algorithim non-terminating in practice and
therefore it is useless.)

On second place, this algorithm generates the qies@édf-extracting compression file but
if we assume that we have a decompression prognamad shorter data file may exist,
which will return our string if we input this daia the decompression program. This
means that here we are talking only of self-exingotompressions.

So, we have the perfect compression algorithm. Weat say the perfect compression
program because no one wrote this algorithm agram because this is useless work.
The description of this algorithm can be obtainaceatly from the definition of
Kolmogov's complexity [10]. This means that we say that Kolmogov is the author of
the first compression algorithm but maybe thisos ¢orrect because this algorithm cannot
work in real time. Today we have many programs Wwhtake compression (including
self-extractable compression). These programs atrg@erfect but they can work in real
time. Actually, these programs are much more caafdd than the perfect compression
algorithm and you cannot construct them directhynfrthe perfect compressor because
they are based on totally different principles.

The situation is similar with the perfect Al ancktreal Al. We have the perfect Al but we
cannot extract a real Al which will be able to warkreal time directly from it. This
comes to show how difficult our task to make a Adas.

Dividing the problem in two parts

In order to construct a real Al we will divide irk in two parts. The first part is to find
a good model of the world and the second part chtmse the best action on the basis of
the selected model.

Actually, in the perfect Al these two parts are separated. We will remind that the
perfect Al from [4, 5] works by trying all possib&rategies in all possible models and
chooses the best strategy with the biggest aveesydt (the average result is calculated
on the basis of all possible models). So, the peré solves these two tasks jointly,

without separating them. Nevertheless, the separati this two problems is natural and
we will make it.

If we have real time solution of both these proldethen we will have a real Al.
Unfortunately, both these problems lead us to abaowatorial explosion. These two
problems are not very famous because they do na hmny applications outside the
field of the Artificial Intelligence.

We will start with the second problem which is mé@mous and better studied.

Finding of the correct action on the basis of a given model

We have an algorithm for solving of this problerheThame of this algorithm is Min-Max
and we use it with great success in Chess playograms. Nevertheless, this algorithm is
not proper in all cases because sometimes it givesmbinatorial explosion. Actually, it
gives combinatorial explosion even with chess buthis game we can go around the
combinatorial explosion by limiting the depth inialinwe examine the tree of the game.
This is possible with the game of chess becauseamemake good evaluation of the
position on the basis of things like the numberpaces on the board and on the
"territory" which these pieces cover. Thereforesame cases this problem is solvable in
real time but not in all cases.

A famous example is the problem how to make a puogwhich can play the Go game
well enough to beat a professional player. A pa€®ne million dollars was offered for
working out this problem [11]. Unfortunately, theize was not taken because the
problem is too complex. The Go game looks likedhess but in it you cannot apply the
Min-Max algorithm directly because you do not havgood evaluation function for the
positions. The problem is that we have too mangiptessmoves and mostly because in the

Go game after many moves nothing essential hapfasthing which can be easily
detected by a simple evaluation function).

As we said at the beginning, we will not give ausioh to this problem. This is not
because the One Million Dollar Prize has alreadyired but because we do not know
how to solve this problem. Anyway, we will give senaleas. The main idea is to define
intermediate goals and large steps. Actually, inegliate goal is used in the chess playing
programs where this goal is to increase the valuth® position. Unfortunately, this
intermediate goal is given by the programmer butAb this goal should be generated
automatically because Al cannot depend on a prageano say what is right to be done
in each case.

What is to think in large steps. This means to @lachain of intermediate goals which
leads to the main goal. Here we will say "goal" évents which we evaluate as good
ones. One event can be evaluated as a good onibgyaor because it is part of a chain
which leads to an event which has already beemuatead as a good one. So, thinking by
large steps will be planing chains of events. Rathsplaning we can use the Min-Max
algorithm but here the problem is how to define néseautomatically and how to
automatically find the way for transition from oeeent to another. For example, with the
game of chess you have events "taking of enemy'paed "winning the game". There is
a connection between these two events and thisection is built in the chess playing
programs by their creators. So, the chess playingram tries to take enemy pieces in
order to win the game. The problem is how to makgagram which defines events
automatically and automatically evaluates thesatsvas good or bad. Also, Al has to be
able to automatically find connections between eéhegents in order to plan a chain of
events.

Actually, all these thoughts lead us to the faeit h order to solve the second problem
we need a solution of the first one because inrotaehink in large steps we need an
automatic detection of events and this is parthefgroblem of finding a good model of
the world. From this point on we will talk only altathe solution of the first problem.

Formalisation of thefirst problem

Here when we say a good model we mean an adegueteéso, this means a model which
will give a correct predictions for the future.

The first step in solving a problem is to formaliseLet us examine the following formal
problem. Let us have a two finite alphab&t@and Q. Let us have a random generator
which generates letters from the alphabetnd a transducer which inputs a letter fram
and outputs a letter fro@. The goal is to built a model of this transducéich will give

us the possibility to guess its next output if wew the input letter and if we know the
entire history (i.e. if we know the row,dx, &, by, ... , &1, h1, & where aare the letters
from the random device which are inputted in tl@sducer and; lare the letters which

are outputted.) So, the question is what will be dlitput on the step n if we know all
data from step 0 to step n-1 and the input ontdye 3. In other words, what will be i
we know g, by, &, by, ..., &1, bha, &

> Q
[Random Generator] —» | Transducer | —

What is the connection between this formalisatiod the definition of Al [1,2,3]? Here
we have a random generator and transducer, whiehact. In the definition of Al the
transducer corresponds to the concept of WorldeHeg try to make a model of the
transducer but in [1,2,3] Al tries to understaneé W¥World. This means that here the
random generator corresponds to the Al from [1,2/@fere is the difference? Al reads
the output of the World (of the transducer) but thedom generator does not have any
input. Al is able to carry out some experimentgiider to understand the World but the
random generator does not make any intentionalrempets. Anyway, if the observer
waits long enough the random generator will makexgeriments (accidentally).

Note: In [1,2,3] the alphabeis andQ areQ andZ and the lettera andb ared andv.
This can cause confusion in understanding the atiomebetween [1,2,3] and this paper.

How to find a good model of the world (transducer)

So, we have a formalisation and now our probleforimal. As we said this problem is not
famous because it has not many applications outs&ldeld of Al. It is even difficult to
find an example for a practical problem which ledaighis theoretic formalisation. The
only such example which we have in mind is theofsihg. Let us have a program
protected against illegal use by a hardware keycdeif we want to break this protection
we have to understand how this hardware key workistey to recreate it. Really, the
practical problem allows us to open the key ancheseit is designed but here we assume
that we have no such possibility and that we havebiserve the key as a black box and to
study only its input and output.

As you see, there are not many applications ofptoblem. Maybe this is the reason that
nobody offers a price for its solution but neveltbs, here we will discus this problem.

So, is this problem solvable. In the general caseanswer is no because if we do not
make any suggestions about the transducer thenilivetvbe able to say anything about
its next output. For example, if it outputs one #mel same letter one hundred times in a
row irregardless of the input then we can prediat bn the next step it will workout the
same letter. This prediction looks natural butigs lon the conjecture that the simpler
explanation is more probable than the complicatesl @Vithout this conjecture we cannot
make any prediction because it is possible thahigncase we have a transducer which

outputs one hundred times one and the same lettleorathe next step it outputs another
letter.

We said that we will look for the simplest modeltbé transducer. Also, we have to bear
in mind that we need a solution which works in teaé.

Another question is whether our transducer is datestic device or not. It will be much
easier if we assume that the transducer is a digietior device but if we restrict our
search only in the set of deterministic models ttienchance to find a proper model in a
concrete situation is very small.

Next question. How many internal states our traosdias. It is reasonable to suggest
that the number of internal states is finite (i@t it is finite automata). Anyway, the more
general case is to suggest countably many intestaaés. It is no use suggesting an
uncountable number for the internal states becanlyea countable subset of them will be
obtainable in the deterministic case. In the notemhenistic case there is some use in
suggesting an uncountable number of internal statesf we restrict our observation to

the set of calculable functions then again ther@asuse suggesting an uncountable
number for the internal states of the transducer.

The last question. Is our transducer a calculalotetion or not. Definitely yes. We are
looking for a practical solution so it has to beadculable function and even it has to be an
easy calculable function (i.e. calculable for smaiimber of steps without problems like
combinatorial explosion). Beside that, every noletdable function can be approximated
with a calculable one (of course, until the corembment n but not until the infinity).

Onetheoretical solution

Here we will give the next useless theoretical smfuwhich cannot work in real time. The
reason that we give this solution is to show thiahsone exists. This is important because
we cannot give a solution which can work in readeti Instead of that at the end of this
paper we will give some ideas about the creatiomalftime solution.

Here is our theoretical solution. First for theatatinistic case:

It will enumerate all programs and will return tfiest one (i.e. the shortest one) which
generates the rowp,b..., b4 if the input is g ... , &1 Here we have a problem with
undecidability of the halting problem again. So, wi# take not the shortest one but this
which has minimal sum between its length and th&man number of program steps
which it needs to generate any of the outputs &ing. of , ..., b.1). So, this algorithm
will give us a short and quick program which ma&iegery good prediction of,bThe only
problem is that we will have to wait this algorithnfinish almost forever.

For the non-deterministic case we have to comglioat algorithm a little bit.

First we will complicate our programs (which we @semodels) by adding one subroutine
random() which will return zero or one with possibility 1/2Vith this subroutine we
cannot generate even the possibility 1/3 but bygusubroutinerandom() we can
approximate any possibility (nevertheless is ioral or irrational number).

Now, when we deal with non-deterministic modelscaanot say simply yes or no to the
guestion does this model generate our sequencetotnstead of that, we can calculate
the possibility for our sequence to be generatéad.oOrse, here we will have the problem
with the non-terminating models again and in ortadekeep things calculable we will add
one constanMax and we will calculate the possibility of the model generate our
sequence for no more thiax steps per output.

What is the prediction of one non-deterministic ®lddr b,. First we do not know what

is the internal state of the model when it inpaiecause there may be more than one
possible way for this model to generatge .b, b.1. Even if we know the internal state we
cannot say which letter will be worked outl@asbecause our model is non-deterministic.
Nevertheless, we can calculate for concrete mdaelpbssibility for every letter to be
worked out.

Every model will give us some prediction but we éndw choose which one to trust and
which prediction to accept as the better one. hisstion will not be discussed in this
paper.

Some ideas about the practical solution

First, in order to make real time solution we w@ktrict the observation to the set of
models with a finite number of states (finite auéba). Of course, this restriction is
essential because some of the worlds (transducarg)ot be described with a finite
models. Anyway, in many cases the finite modelssaifécient or at least they can give a
good approximation of the World. (You can find #] {he idea that we can raise the finite
models with first order axioms in order to make sdor more complex worlds.)

Second, we have to mention that we will look fareh of good models instead of a single
model. The chance to find a single model which dess the world is small. It is more

probably to find many different simple models whidascribe different features of the
world. Also, in this way our system will be morenststent because in its life (work time)

it will change some of the selected models inst&achanging the only model which can
make its behaviour totally different.

Now, let us start with the case of deterministicdels. Such model looks like a
deterministic finite automata (with finite numbdrsbates, starting state, arcs labelled with
the letters fronk, etc.) but here we will have only one type ofe&s$afno final states) and
we will have a second label on every arc which bdglla letter fronf2.

If we have such a model with a reasonable numbestaies we can easily find it by a
backtracing algorithm similar to the one from [Bhyway, the existence of such model is
very suspicious because if we have deterministideghahen we will be able 100%

correctly to predict the future. This will mean thihe world is very simple, which is not

the interesting case.

Let us look for a non-deterministic model of theridoActually, as we said, we will look
for a set of many non-deterministic models.

We will divide the non-deterministic models in tvgooups - partially deterministic and
totally non-deterministic. Examples of these twpey of non-deterministic models are
found in [6, 7].

Partially deterministic models will look like theewrministic models but with the
difference that they will have a second label om &hcs, which is a set of letters fr@in
instead of one letter. Actually, this will be a s#t2-tuples from letter and possibility
because every letter fro@ will have its own possibility to be worked out tine case
when the model is in the respective state andret iletter fromX is that which is the
first label of the arc.

The good side of partially deterministic modelghat their current state is determined.
From every deterministic automata on alphabeive can make partially deterministic
model by defining the possibilities through statson the basis of life experience, (&,

., &1,). In fact, statistics will not give us the posépibut the number of times
certain letter is worked out in certain situatitmthis case (1, 1) is different from (30, 30)
because in both cases we have 50% possibilitynktiliei second case this is more certain.

So, we have so many partially deterministic models the question is which of them are
better. This is a very difficult question and wel wot discus it here. We will say only that

if one model gives in some cases (i.e. arcs) puiediavhich is useful (for example 100%

possibility for certain letter) and reliable (itkis link is used many times) then this model
is useful.

How to find a good partially deterministic modeksE we need a definition which strictly
says which model is better. The second probletmaswe have to search for this model in
huge set of possible candidates.

The idea which we will give in this paper is to eb& the behaviour of a single letter. We
will call this method the "sunshine" method fordiimg finite automata. This idea is based
on the fact that if we observe only the arcs wihialie a certain letter as a first label these
arcs make one or more figures which we will caliiS'. The Sun is a cycle with paths

which flow in it. This figure looks like the picterof the sun which children use to draw.

\ "/

N e

—— o ——

rd N

/‘\

The idea is that we will be able to relatively edsyect the dependency in the figure Sun
and after constructing several suns to construgtfitite automate from these suns. In
order to catch dependencies for one letter wensdld to observe long sequences of this
letter. We may wait long until the random generaemnerates such sequence (especially if
the alphabet is big which is the general case). That is whywieuse elimination of
letters and construction of compound letters. Blation of letters is when we assume that
some letters do not change the state of the m@iehpound letters are sets of letters
which we accept as one letter. In [6, 7] we haveesample of partially deterministic
model where we use letters "left" and "right". Ténare assume that all other letters do not
change the state of the model (i.e. these letterglminated). In the next model in [6, 7]
we have the letter "victory or loss" which is comapd. Actually, this compound letter is
not fromZ but romQ. Really, in the deterministic model there is nosgeto include the
output of the transducer as information our moagdeshds on but in a non-deterministic
case this information is essential and it is reabtento use it in our model.

Bibliography

[1] Dobrev D. D. Al - What is this. In: PC MagazirdBulgaria, November'2000, pp.12-13 (in Bulgarian,
also in [9] in English).

[2] Dobrev D. D. Al - How does it cope in an arbity world. In: PC Magazine - Bulgaria, February'200
pp.12-13 (in Bulgarian, also in [9] in English).

[3] Dobrev D. D. A Definition of Artificial Intellgence. In: Mathematica Balkanica, New Series, ¥8l.
2005, Fasc. 1-2, pp.67-74.

[4] Dobrev D. D. Formal Definition of Artificial Itelligence. In: International Journal "Informati®heories
& Applications", vol.12, Number 3, 2005, pp.277-285

[5] Dobrev D. D. Formal Definition of Al and an Adgithm which Satisfies this Definition. In: Procémgs
of XllI-th International Conference KDS 2006, JuR@06 Varna, Bulgaria, pp.230-237.

[6] Dobrev D. D. Testing Al in One Atrtificial Worldin: Proceedings of XI-th International Conference
KDS 2005, June, 2005 Varna, Bulgaria, pp.461-464.

[7] Dobrev D. D. Al in Arbitrary World. In: Proceawys of 5th Panhellenic Logic Symposium, July 2005,
University of Athens, Athens, Greece, pp. 62-67.

[8] Dobrev D. D. First and oldest application, hitgww.dobrev.com/Alffirst.html
[9] Dobrev D. D. Al Project, http:/Awww.dobrev.cofi/

[10] Kolmogorov A. N. and Uspensky V. A. Algorithnasid randomness. - SIAM J. Theory of Probability
and Its Applications, vol. 32 (1987), pp.389-412.
[11] The Million Dollar Prize http://www.reiss.demao.uk/webgo/million.htm

